# Lecture 3: Fundamentals: Signal processing, acoustics, speech signals



http://www.chatterboxspeech.com.au/speech-articulation/

Waldo Nogueira 04/10/2022







#### Speech Chain





#### Sound Wave



©2011. Dan Russell

• Animation courtesy of Dr. Dan Russell, Kettering University





#### Equation of this wave?





#### Digitizing speech sounds

- Analog to Digital Conversion
  - Sampling Quantization \$(2) s(n)5(1) s(n)Microphone Continuous Sound s(n-1)Discrete pressure Digital wave Samples

Thanks to Bryan Pellom for this slide!



### <u>Sampling</u>

• Nyquist Theorem



#### <u>Aliasing</u>





#### Frequency range of speech



MHH Medizinische Hochschule Hannover

#### Sampling speech sounds

- In practice we use the following sample rates
  - 8 kHz: Telephone
  - 16 kHz for microphones, "wideband"
- Why?
  - Human speech < 10 kHz
  - Telephone is filtered at 4 kHz (300 Hz to 3.4 kHz), so 8 kHz is enough



#### **Quantization**

- Usually into 8 bits (256 levels) or 16 bits (65k) levels
- The simplest quantization distributes the real values uniformly among the levels
  - More complicated ones focus on reducing the quantization error



#### Uniform Quantization

- The decision and reconstruction levels are uniformly spaced.
- In coding it is usually called PCM (Pulse Code Modulation)





#### Nonuniform Quantization

- Reconstruction and decision levels do not have equal spacing.
- Low level signals are more common than high level ones, thus we make quantization steps closer together at the most common signal levels.
- In coding we call this log-PCM.
- Most typical algorithms are A-law (Europe) and μ-law (US)







#### Characteristics of speech signals

- Periodic: voiced
- Aperiodic: unvoiced

- **Properties:**
- Intensity
- Frequency
- Timbre



#### Amplitude/energy of a signal

Signal energy (Joules)

$$E_S = \sum_{i=1}^N x[i]^2$$





### Power of a signal

 Energy per unit of time. What we call power is usually the "average power" defined as:

$$P_{avg} = \frac{1}{N} \sum_{i=1}^{N} x[i]^2$$

- Ist dimension is Energy/time (Joules/second) = Watts
- We divide the signal into "windows" of N samples



#### RMS value

• We usually take the root mean square (RMS) value





### Plot of RMS







МН

#### Sound Pressure Level

• Sound pressure level (SPL)  $P_0 = 2^{-5}$  Pascals

$$SPL = 20 \log_{10} \frac{p}{p_0}$$
, p is pressure

Sound power level (PWL) and the sound intensity level (IL)

$$PWL = 10log_{10} \frac{P}{P_0}$$
  $IL = 10log_{10} \frac{I}{I_0}$ , P is power

• Where  $P_0 = 10^{-12}$  Watts and  $I_0 = 10^{-12}$  Watts/ $m^2$ 

http://www.sengpielaudio.com/calculator-soundpower.htm



#### SPL ranges for speech sounds





#### Fundamental Frequency

- Waveform of a vowel (voiced signal)
- Fundamental frequency = 1/T

Vowel has 10 reps in .03875 secs
 → freq is 10/.03875 = 258 Hz





#### Ranges of f0 in speech

- Male: 85-180 Hz
- Female: 165-255 Hz



## <u>Pi</u>tch

- Pitch: perceived fundamental frequency
- Non linear relationship:
  - Human pitch perception is most accurate between 100 Hz and 100 Hz.
    - Linear in this range: At  $F_{01}$ =200 Hz, if Pitch2=Pitch1/2 then  $F_{02} \approx 100$  Hz
  - Logarithmic above 1000 Hz: At  $F_{01} = 5$  kHz if Pitch2 = Pitch1/2 then  $F_{02} \approx 2 kHz$
- Still, in the literature many times F0 and pitch are treated as the same



#### Pitch vs. F0 modeling

 Mel scale in one model of F0-pitch mapping

$$m = 2595 \log_{10} \left( \frac{f}{700} + 1 \right)$$
$$= 1127 \log_e \left( \frac{f}{700} + 1 \right)$$



#### Pitch mels vs Hz





#### F0 tracking: prosody



 F0 can be computed using several techniques, and using tools like PRAAT



#### Harmonic components (voiced sounds)





#### **Spectrum**

- Representation of energy at the different frequency components:
  - Harmonic components
  - Partials (unvoiced sounds or components of voiced sounds)



#### Fourier transform anlysis

- Fourier analysis: any wave can be represented as the (infinite) sum of sine waves of different frequencies (amplitude, phase)
- For continuous signals

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi t f} dt$$

• For discrete signals

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i\frac{2\pi}{N}kn}$$
 k = 0,...,N-1

 When N is finite (and relatively short) we call the resulting signal the short term spectrum



#### Spectrum Example

- Spectrum of one instant in an actual sound wave: many components across the frequency range
- Each frequency<sup>3</sup>
  component of the wave is separated

Medizinische Hochschule

**@DHZ** 



#### Short-term spectrum of a speech signal





#### **Formants**

- Formants are defined as the spectral peaks of the sound spectrum envelope
- Formants are independent of the F0 frequency, as they are defined over the envelope of the spectrum
- They are created by the pass of the sound through the vocal tract





## Seeing formants: the





# Formants in the vowels (American English)

<u>http://www.uiowa.edu/~acadtech/phonetics/english/frameset.html</u>





#### <u>Exa</u>mple



