

Electric-Acoustic Stimulation: Evaluation of speech intelligibility and its relationship with electrical-acoustic interaction

<u>Waldo Nogueira</u> 12.10.2022 Milan

Medizinische Hochschule Hannover, Cluster of Excellence "Hearing4all", Hannover, Germany

Cochlear Implant with EAS

Figure from MED-EL

- Residual hearing preservation via flexible electrodes and atraumatic insertion
- Cochlear implant and hearing aid in a sound processor
- Residual hearing at low frequencies (green) complements stimulation through cochlear implant (blue)
 - Results in more natural hearing and improved speech perception

Cochlear Implante with EAS

- Residual hearing preservation via flexible electrodes and atraumatic insertion
- Cochlear implant and hearing aid in a sound processor
- Residual hearing at low frequencies (green) complements stimulation through cochlear implant (blue)
 - Results in more natural hearing and improved speech perception

Cochlear Implant with EAS

https://de.wikipedia.org/wiki/Elektrisch-akustische_Stimulation

More and more patients with residual hearing in the low frequencies use a CI

Cross Over Frequency (CoF)

- Acoustic Component
 - CoF: Cross-Over-Frequency
 - Amplification
 - **Cochlear Implant**
 - CoF: Cross-Over-Frequency

CoF

Levels Acoustic Strategy Frequency Bands

Current level

Motivation

- It is not clear which fitting is optimal for EAS users. Which frequencies should be transmitted to the acoustic and electrical part?
 - What amplification should be configured in the acoustic part?
 - Is there an interaction between acoustic and electrical stimulation?
 - Does the interaction have to be taken into account in the fitting?

Hypothesis

- Performance with the EAS system may be limited by the interaction between electrical and acoustic stimulation.
 - Some EAS users do not use the acoustic component.
 - Some EAS users need more time to obtain maximum performance compared to cochlear implant users.

Motivation

- It is not clear which fitting is optimal for EAS users. Which frequencies should be transmitted to the acoustic and electrical part?
 - What amplification should be configured in the acoustic part?
 - Is there an interaction between acoustic and electrical stimulation?
 - Does the interaction have to be taken into account in the fitting?
- Hypothesis
 - Performance with the EAS system may be limited by the interaction between electrical and acoustic stimulation.
 - Some EAS users do not use the acoustic component.
 - Some EAS users need more time to obtain maximum performance compared to cochlear implant users.

Optimization of the EAS System is necessary!

- Characterization of EAS interaction
 - Electrode-nerve interface analysis
 - Psychoacoustic measurements
 - Electrophysiological measurements (ECochG)
- Development of adaptation strategy for EAS

1. Where are the electrodes located in the cochlea?

Helge Rask-Andersen, Wie Liu, Univ. Uppsala

Auditory Nerve

grafik peter bauer 2011

- Where exactly are the electrodes located?
- \rightarrow Computed tomography after cochlear implantation

- 1. Where are the electrodes located in the cochlea?
- 2. What is the physical distance between the electrodes and the hair cells?

23.10.2022

Medizinische Hochschule

Hannover

Medizinische Hochschule Hannover

23.10.2022

EAFD: Electric Acoustic Frequency Difference

Electric-Acoustic Frequency Difference (EAFD)

www.mhh-hno.de

- 1. Where are the electrodes located in the cochlea?
- 2. Which is the physical distance between the electrodes and the hair cells?
- 3. What happens when the hair cells and the auditory nerve are stimulated simultaneously?

Helge Rask-Andersen, Wie Liu, Univ. Uppsala

1 mm

Helge Rask-Andersen, Wie Liu, Univ. Uppsala

Masking?

1 mm

- 62

Helge Rask-Andersen, Wie Liu, Univ. Uppse

Masking?

1 mm

1.2

- Estimation of threshold elevation with an additional masker
- Different frequencies and electrodes are used
 - These combinations result in different EAFDs.
- Two conditions: electric-acoustics and acoustics-electrics
- Stimuli: pure tones (acoustics) and pulse trains (electrics) Condition 1:

Psychoacoustic Masking

EAS masking

Psicoacustic Measure

Psychoacoustic Masking

Electric Masking of Acoustic Tones

Acoustic Masking of Electric Tones

www.mhh-hno.de

MH

Krüger, Büchner, Nogueira, HearRes, 2017

Imsiecke, Krüger, Büchner, Lenarz, Nogueira, HearRes, 2018

- 1. Where are the electrodes located in the cochlea?
- 2. What is the distance between the electrodes and the hair cells?
- 3. What happens when the hair cells and the auditory nerve are simultaneously stimulated?
- 4. What impact does masking have on speech intelligibility?

Outline of EAS Fitting Strategies

- Constant Acoustic Amplification, CoF a 65 dB HL
- Meet:
 - Assignement based on CoF
- Overlap:
 - Increase in electric frequency content
- UNMASKfit:
 - M-level individually reduced based on masking

Outline of EAS Fitting Strategies

- Constant Acoustic Amplification, CoF a 65 dB HL
- Meet:
 - Assignement based on CoF
- Overlap:
 - Increase in electric frequency content
- UNMASKfit:
 - M-level individually reduced based on masking

Chronic Study: Patients

Subject ID	Electrode type	Insertion depth [°]	Stakhovskaya Frequency [Hz]	
1	Flex 20	316	1044	
2	Flex 20	348	840	
3	Flex 28	532	352	
4	Flex 28 PI	342	872	
5+	Flex 24	450	550	
6	Flex 16	237	2072	
7	Flex 20	347	845	
8	Flex 16	254	1781	
9	Flex 24	346	850	
10	Flex 16	220	2388	
11	Flex 16	220	2388	
12 ⁺	Flex 28	397	664	
13	Flex 24 PI	242	2000	
14	Flex 24 PI	192	2937	
15	Flex 28 PI	324	984	
16	Flex 16	217	2446	
17	Flex 24	444	563	

+ drop-out

Speech Test

- OLSA: Adaptive Matrix Test
- Spech Reception Threshold (SRT)

Name	Verb	Numeral	Noun	Adjective
Claudia	tiene	dos	libros	grandes
Carmen	hace	tres	barcos	viejos
Elena	toma	doce	platos	nuevos
Teresa	busca	siete	regalos	pequeños
Josefa	quiere	seis	guantes	enormes
José	compra	diez	zapatos	azules
Antonio	pinta	cuatro	juegos	bellos
Carlos	mira	veinte	dados	lindos
Pedro	pierde	ocho	sillones	baratos
Manuel	vende	mil	anillos	negros

- 1. Where are the electrodes located in the cochlea?
- 2. What is the distance between the electrodes and the hair cells?
- 3. What happens when the hair cells and the auditory nerve are simultaneously stimulated?
- 4. What impact does masking have on speech intelligibility?
- 5. Can the interaction be measured objectively?

Electrophysiogical Masking

• Goals:

- Investigate possible effects of masking in the peripheral system, where does masking occur?
- To objectively measure EAS masking
- Accelerate interaction measurements based on psychoacoustics
- Methods:
 - Electrophysiological measurements based on the implant telemetry system.

EAS Interaction

ECochG / Cochlear Microphonics

Intracochlear Electrococleography

- Response of the hair cells and auditory nerve when an acoustic tone is presented
- An acoustic tone with two phases (A+ and A-) is presented.
- By subtracting (DIF) the response or summing (SUM) the hair cell or auditory nerve response can be estimated.

- Characterization of the Electrode-Nerve Interface in EAS
 - CT-based medical imaging: Where are the electrodes located in the cochlea and how far from the hair cells?
 - Psychoacoustic Experiments
 →EAS interaction exists
 - Use of electrocochleography to investigate the interaction
- There is an interaction between electrical and acoustic stimulation.
 - An acoustic tone has a greater masking effect than an electric tone.
- Clinical Application: Fitting of EAS devices
 - High overlap between acoustic and electrical stimulation
 - \rightarrow Worse speech understanding

Contralateral Efferent Suppression of Human Hearing Sensitivity in Single-sided Deaf Cochlear Implant Users)

Waldo Nogueira, Enrique Lopez-Poveda, Andreas Büchner, Benjamin Krüger

Milan 12/10/2022

- Cochlear implants (CIs) implanted in people with unilateral hearing loss
 - Speech intelligibility
 - Sound source localization
- Cls are designed to restore the afferent auditory system

 The present study aimed at investigating whether a CI can also restore some efferent effects

 Specifically, we investigated the potential <u>suppressing effect</u> of CI electrical stimulation on the normal hearing ear via activation of the contralateral medial olivocochlear (MOC) efferents

The mammalian olivocochlear bundle

Medizinische Hochschule Hannover

 5 AB unilateral CI users with an average hearing loss of less than 15 dB HL up to 4000 Hz in the acoustic ear participated in the study

- Contralateral Broadband Electrical Stimulus (CBES):
 - Wideband \rightarrow Increase probability of activating the MOC reflex

Full synchronization between electric and acoustic stimulation

BEDCS (AB) + Hardware Interface

Material and Methods Probe Threshold Detection Acoustic Ear in the Presence of a CBES

Medizinische Hochschule Hannover

- Absolute thresholds on acoustic ears measured for pure tones:
 - Frequencies: 500 Hz and 4000 Hz
 - Durations: 10 ms and and 200 ms
- In the presence and absence of a CBES (3-AFC) (at 50 and 60 dB SPL)

- Each threshold measured 2 times
- The difference in thresholds between the conditions with and without CBES was regarded as estimation of inhibitory effect of contralateral MOC reflex evoked by the CI → Threshold Elevation in dB

- Results revealed a statistical significant interaction between duration and frequency (F(1,4) = 16.041, p = 0.016).
- All other possible interactions between pairs of factors or between the three factors were not statistically significant.
- The analysis also revealed a significant effect of duration (F(1,4)=21.094,p=0.010) on threshold elevation.

Decay slope of threshold elevation was more prominent at 500 Hz than at 4000 Hz

Wilcoxon signed rank test demonstrates an almost significant threshold elevation of 0.63 dB (p=0.06).

Discovered by David Kemp in 1978

D. T. Kemp: Stimulated acoustic emissions from the human auditory system. J Acoust Soc Am 1978. Figures from "Otoacoustic Emissions in Perspective." In: Otoacoustic Emissions (Eds.: M.S. Robinette, T. J. Glattke) Thieme 1997.

Oto-Acoustic Emission (OAE)

- The discovery of oto-acoustic emissions (OAEs) by David Kemp in 1978 has produced a fast, powerful, and versatile tool for diagnosing cochlear integrity.
- OAE measurements are today a standard part of the audiometric test battery. OAEs are elicited and measured by means of electro-acoustic transducers (loudspeaker and microphone) within an ear probe placed in the outer ear canal.
- There are spontaneous (SOAEs) and evoked OAEs (EOAEs).
 - EOAEs are the byproduct of the non-linear sound amplification process in the cochlea.
 - OAEs are low-level sound emissions generated by the outer hair cells (OHCs) within the cochlea.
 - OAE levels depend on the number of functioning outer hair cells given a normal middleear function. OAE levels depend on the ear canal volume.
 - Because of the smaller ear canal volume, OAE amplitude in newborns and infants is higher compared to that in adults.
 - Thus, OAEs are easier to measure and thus provide a suited tool for newborn-hearing screening and follow-up diagnostics.

CBES

CBES

without CBES

with CBES

CBES: White Noise throguh the CI

- Small but almost significant effect of CBES on threshold elevation in the acoustic ear.
- This increase appears smaller than previously reported for normal hearing listeners.
- These preliminary results support the notion that for singlesided deaf CI users, the CI may modulate hearing in the normal, acoustic ear via activation of the contralateral MOCR.
- Further research is required to fully characterize such modulations.

Andreas Büchner Thomas Lenarz

We gratefully thank for funding of this project:

Hearing4ll

Thank you! – Questions?

- Entwicklung von EAS Anpassungsmethode
- Entwicklung von EAS Soundverarbeitungsstrategien

Auditory Prosthetic Group

Benjamin Krüger Dr.-Ing (cand)

Marina Imsiecke Dr. rer. Nat (cand)

MED[©]EL

Vielen Dank!

Mehr Info unter: <u>http://auditoryprostheticgroup.weebly.com/</u>

